US009075687B1

a2 United States Patent

Liu et al.

US 9,075,687 B1
Jul. 7, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

SYSTEM AND METHODS FOR
DECLARATION-BASED EXTENSION
MANAGEMENT FOR MULTI-TENANT
ENVIRONMENTS

Applicant: NETSUITE INC., San Mateo, CA (US)

Inventors: Alan S. Liu, Palo Alto, CA (US); Ryan
Grisso, San Francisco, CA (US)

Assignee: NetSuite Inc., San Mateo, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 46 days.

Appl. No.: 13/865,430

Filed: Apr. 18, 2013

Related U.S. Application Data

Provisional application No. 61/635,427, filed on Apr.
19, 2012.

Int. CI.
GOGF 9/44 (2006.01)

GOGF 17/00 (2006.01)

G06Q 40/00 (2012.01)

GOGF 9/445 (2006.01)

USS. CL

CPC oo GOGF 8/65 (2013.01)

Field of Classification Search

CPC GOGF 8/60; GOGF 8/65; GOGF 8/67,
HO4L 29/06; HO4L 29/08981

See application file for complete search history.

Receive

Extension Package
502

I

Parse
Extension
Declarations
504

l

(56) References Cited
U.S. PATENT DOCUMENTS

8,255,490 B1* 82012 Porteretal. 709/219
2006/0247944 Al* 112006 Calusinski et al. 705/1
2007/0250531 Al* 10/2007 Wiggins etal. 707/102
2008/0256607 Al* 10/2008 Janedittakarn et al. 726/4
2010/0005443 Al* 12010 Kwoketal.ccec.e.. 717/100
2011/0010394 Al* 1/2011 Carewetal. ... 707/793
2012/0030168 Al* 2/2012 Weissenberger et al. ... 707/611
2012/0151439 Al* 6/2012 Demantet al. 717/120

* cited by examiner

Primary Examiner — Don Wong
Assistant Examiner — Mohammad Kabir
(74) Attorney, Agent, or Firm — Lane Powell PC

(57) ABSTRACT

A system and associated methods for enabling a tenant user of
a multi-tenant computing platform to introduce an extension
to the platform’s functions and capabilities. A computing
system, such as a distributed computing service platform,
may manage independent customizations and/or extensions
(collectively, “extensions”) of the service platform by mul-
tiple tenants in a manner that avoids undesirable behavior that
may be caused by incompatible extensions. The service may
accomplish this by requiring that a proposed extension pro-
vided by a tenant or extension vendor be accompanied by a
formal declaration with respect to service platform compo-
nent functionality and/or service platform data objects (col-
lectively, “service platform resources™) that are utilized and/
or modified by the extension. The service may further require
that the extension be accompanied by validation code (e.g.,
one or more modules) that is capable of verifying that par-
ticular code modules or data objects of the extension are
functioning as expected.

18 Claims, 8 Drawing Sheets

Datsrmine
Validation Code
Coverage 508

Execute All

Validation Code
507

Coverags >
Threshold?
508

Yes

Instalt

Extension Code
512

Policies
514

Enforce
Extension Declaration

500

o
No Extension Code

Provider
10

01 @omiag Bunndwog painguisig

US 9,075,687 B1

Sheet 1 of 8

Jul. 7, 2015

oel
1abeuepy
uoIsusIxg
€CL Ll
NEVVETS In
14}
81015
eleq . .
.
€cl 142
JaAIa
143 S n
aI0]g
ejeq
LMM._ zzl 0zl
obEIOIS slanleg (s)aoepayu]
e1eq uopes)ddy Jesn

U.S. Patent

L ainbiy

Q
(&
—

901
(shriomisN

I

ZoL
susID

1423

N
-—
—

|
|

il

oL1

I

801

U.S. Patent Jul. 7, 2015 Sheet 2 of 8 US 9,075,687 B1

l;]\ Ul Elements _/ N _ UserInterfaces _* Ul Layer

04 S 2
r—————"-"—--——“-———-————-—""——"_'""—"—-————""——"—--—';
| |
| |
| i
| 1
l 1
I |
! | B 3 | 1
| |
l |
| |
| 1
| 1
I 1
I |
| 1
| |
I |
| |
| |
I |
i * Application /4 i
! \\Sub-modules_/ Modules Aop Layer |

12

’ 2 oo 210!
L e e

___ Data
i Storage |
I Layer |
| |
| | || | | | | | e [220 |
: \Object :
| Components |
l 221 i
l |
S 1 s s P ;
: . Data E
: ' Objects |
! 222 !
| i
1 S I O I I R / E
i |
e !
b e e e e, ——————

00

== Figure 2

U.S. Patent

US 9,075,687 B1

Jul. 7, 2015 Sheet 3 of 8
Ul Layer App Layer DS Layer
Declarations Declarations Declarations
310 312 314
Declarations
303
Ul Layer App Layer DS Layer
Extensions Extensions Extensions
311 313 315
Extension Code
302
Code Code Code
Module Module Ll Module
305 305 305

Validation Code
304

Extension Package

300

Figure 3

U.S. Patent

US 9,075,687 B1

Jul. 7, 2015 Sheet 4 of 8
/’_\
Install ~
Validation
406 Validation Code
Database
404
Runtime L‘/
Validation
Declaration
Declaration Da’z:g)zase
Enforcement
408
v

Extension Manager

400

Figure 4

U.S. Patent Jul. 7, 2015 Sheet 5 of 8 US 9,075,687 B1

Receive
Extension Package
502

Y
Parse
Extension
Declarations
504

Y

Determine
Validation Code
Coverage 506

Execute All
Validation Code
507

Notify
Extension Code
Provider
510

Coverage >
Threshold?
508

Yes

Install
Extension Code
512

\d
Enforce
Extension Declaration
Policies
514

500

Figure 5

U.S. Patent

Jul. 7, 2015

Receive
New Set of
Extension Declarations
602

v

Determine Overlap
w.r.t. Existing Set of
Extension Declarations
604

Sheet 6 of 8

Receive
Extension-Related

\

Update
Overlap Map
606

Y

Request 608

Uses Code
In Overlap?
610

Yes

No

US 9,075,687 B1

Determine
Validation Code
Assoc. With Request
612

A

Execute
Validation Code
614

Validates?
616

No

Yes

Y

Y

Reject Request
As Non-Validating
618

Process Request
620

00

Figure 6

U.S. Patent

Jul. 7, 2015

Receive
Extension-Related
Request 702

Y

Determine
Corresponding
Extension Declaration
704

Y

Determine Whether
Request Conforms to
Declaration
706

Conforms?

Sheet 7 of 8

No

708

Yes

Process Request
710

A

Reject Request
As Not Conforming
to Declaration
712

~
-
S

US 9,075,687 B1

Figure 7

U.S. Patent Jul. 7, 2015 Sheet 8 of 8 US 9,075,687 B1

/\

I/O Controller K= (k== Display Adapter K——> Monitor

81 12 810

Co

Memory K—> K= Serial Port

Co
N
N
Co
e
)

Processor(s) K—— K> Keyboard
820

C0
O
(9]

Printer K— K— Fixed Disk
804 808

802 K—— External Interface

818

800 /

Figure 8

US 9,075,687 B1

1
SYSTEM AND METHODS FOR
DECLARATION-BASED EXTENSION
MANAGEMENT FOR MULTI-TENANT
ENVIRONMENTS

PRIORITY CLAIM

This application claims priority from U.S. provisional
patent application Ser. No. 61/635,427, filed Apr. 19, 2012,
which is incorporated herein by reference in its entirety for all
purposes.

BACKGROUND

Performing computing and data processing functions
using a distributed network of computers has become more
common as enterprises have increased their reliance on a
mobile workforce and have sought ways to reduce the high
costs often associated with investments in information tech-
nology infrastructure. This has led to the development and
deployment of a variety of services and business models, such
as web-based services, Software-as-a-Service (SaaS), and
cloud-computing based data storage and data processing.
Such services and architectures can typically be configured to
use varying amounts of computing resources, for example,
based on service demand. Some such architectures are
“multi-tenant”, that is they provide computing, data process-
ing, and data storage functions to multiple independent users
or businesses.

In an effort to permit tenants to access the services and
functionality that they desire (which may include providing
certain services to their end customers, such as an eCom-
merce platform), a multi-tenant service platform may permit
atenantto configure certain aspects of the available service(s)
to suit their business needs. For example, a business enter-
prise that uses the service platform may want to provide
specific functions or capabilities to their customers. However,
customizations introduced into the platform architecture by
different tenants may be incompatible with each other in one
or more ways, and this can cause a disruption in the services
provided to other tenants. For example, such incompatibili-
ties can cause undesirable and/or unintended behavior in the
service configurations of multiple tenants, including tenants
not associated with the customizations. Certain types of cus-
tomizations may also impact the operation of the platform in
general, such as by altering the manner in which data is
accessed or processed.

Conventional approaches to managing potential problems
arising from customizations and/or extensions to multi-tenant
platform functionality are inefficient, ineffective and/or have
undesirable side effects or other drawbacks with respect to at
least one significant use case. For example, manually testing
system behavior is impractical for anything but the most
trivial of extensions. Further, most systems do not support any
automatic verification of behavior. Those that do may allow
automated verification of extension behavior, but they do not
support a way of predicting possible conflicts using exten-
sions declarations.

Embodiments of the invention are directed toward solving
these and other problems individually and collectively.

SUMMARY

Embodiments of the invention are directed to a system and
associated methods for enabling a tenant user of a multi-
tenant computing platform to introduce an extension to the
platform’s functions and capabilities. In at least one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

2

ment, a computing system, such as a distributed computing
service platform, may manage independent customizations
and/or extensions (collectively, “extensions”) of the service
platform by multiple tenants in a manner that avoids undesir-
able behavior that may be caused by incompatible extensions.
The service may accomplish this by requiring that a proposed
extension provided by a tenant or extension vendor be accom-
panied by a formal declaration with respect to service plat-
form component functionality and/or service platform data
objects (collectively, “service platform resources”) that are
utilized and/or modified by the extension. The service may
further require that the extension be accompanied by valida-
tion code (e.g., one or more modules) that is capable of
verifying that particular code modules or data objects of the
extension are functioning as expected. The service may then
utilize the declarations and provided validation code in a
variety of ways to avoid undesirable behavior caused by
incompatible extensions.

In one embodiment, the invention is directed to a method of
permitting users of a multi-tenant computing service platform
to introduce an extension to one or more of the functions of
the platform, wherein the method includes:

receiving a first extension package from a first user of the

multi-tenant computing service platform, the first exten-
sion package defining a first extension and including a
declaration that identifies one or more resources of the
platform utilized by the first extension and a set of
instructions executable by an electronic processor to
validate operation of the first extension;

parsing the first extension package to identify the included

declaration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-
istic of the first extension; and

installing the first extension if execution of the set of

instructions satisfies the threshold value; and
receiving a second extension package from a second user
of the multi-tenant computing service platform, the sec-
ond extension package defining a second extension and
including a declaration that identifies one or more
resources of the platform utilized by the second exten-
sion and a set of instructions executable by an electronic
processor to validate operation of the second extension;

parsing the second extension package to identify the
included declaration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-
istic of the second extension; and

installing the second extension if execution of the set of

instructions satisfies the threshold value.

In another embodiment, the invention is directed to a
method of permitting a user of a multi-tenant computing
service platform to introduce an extension to one or more of
the functions of the platform, wherein the method includes:

receiving an extension package from the user of the multi-

tenant computing service platform, the extension pack-
age including a declaration that identifies one or more
resources of the platform utilized by the extension and a

US 9,075,687 B1

3

set of instructions executable by an electronic processor

to validate operation of the extension;

parsing the extension package to identify the included dec-

laration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-

istic of the extension;

installing the extension if execution of the set of instruc-

tions satisfies the threshold value;

receiving a request to access the extension;

determining if the request conforms to the terms of the

extension; and processing the request if the request con-

forms to the terms of the extension.

In yet another embodiment, the invention is directed to a
system for permitting users of a multi-tenant computing ser-
vice platform to introduce an extension to one or more of the
functions of the platform, wherein the system includes:

a user interface layer;

an application layer;

a data storage layer; and

an extension manager, the extension manager further com-

prising

an install validation component configured to deter-
mine, at least in part, whether code associated with a
proposed extension satisfies a validation criterion
prior to installation of the code;

a runtime validation component configured to deter-
mine, at least in part, whether execution of the code
associated with the proposed extension would result
in access of resources associated with one or more
other previously installed extensions;

a declaration enforcement component configured to
determine, at least in part, whether execution of the
code associated with the proposed extension results in
access of the resource or resources identified in a
declaration associated with the proposed extension;

a declaration database containing data related to decla-
rations associated with one or more previously
installed extensions; and

a validation code database containing validation code
associated with one or more previously installed
extensions.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, in
which:

FIG. 1 is a schematic diagram depicting aspects of an
example computing environment in which an embodiment of
the invention may be implemented;

FIG. 2 depicts aspects of an example of a distributed com-
puting service architecture in accordance with at least one
embodiment of the invention;

FIG. 3 depicts aspects of an example extension package in
accordance with at least one embodiment of the invention;

FIG. 4 depicts aspects of an example extension manager in
accordance with at least one embodiment of the invention
(such as represented by element 130 in FIG. 1);

FIG. 5 is a flow chart or flow diagram illustrating the steps
or stages of an exemplary process that may be performed as
part of extension management, in accordance with at least one
embodiment of the invention;

20

30

35

40

45

55

4

FIG. 6 is a flow chart or flow diagram illustrating the steps
or stages of an exemplary process that may be performed as
part of extension-related request handling, in accordance with
at least one embodiment of the invention;

FIG. 7 is a flow chart or flow diagram illustrating further
example steps for extension-related request handling, in
accordance with at least one embodiment of the invention;
and

FIG. 8 depicts aspects of elements that may be present in a
computer device and/or system configured to implement a
method and/or process in accordance with some embodi-
ments of the present invention.

Note that the same numbers are used throughout the dis-
closure and figures to reference like components and features.

DETAILED DESCRIPTION

The subject matter of embodiments of the present inven-
tion is described here with specificity to meet statutory
requirements, but this description is not necessarily intended
to limit the scope of the claims. The claimed subject matter
may be embodied in other ways, may include different ele-
ments or steps, and may be used in conjunction with other
existing or future technologies. This description should notbe
interpreted as implying any particular order or arrangement
among or between various steps or elements except when the
order of individual steps or arrangement of elements is explic-
itly described.

In accordance with at least one embodiment of the inven-
tion, a computing system, such as a distributed computing
service platform, may manage independent customizations
and/or extensions (collectively, “extensions”) of the service
platform by multiple tenants in a manner that avoids undesir-
able behavior that may be caused by incompatible extensions.
The service may accomplish this by requiring that a proposed
extension provided by a tenant or extension vendor be accom-
panied by a formal declaration with respect to service plat-
form component functionality and/or service platform data
objects (collectively, “service platform resources”) that are
utilized and/or modified by the extension. The service may
further require that the extension be accompanied by valida-
tion code (e.g., one or more modules) that is capable of
verifying that particular code modules or data objects of the
extension are functioning as expected. The service may uti-
lize the declarations and provided validation code in a variety
of ways to avoid undesirable behavior caused by incompat-
ible extensions.

For example, the service may monitor (at runtime or during
a pre-deployment test phase) the service platform resources
that are utilized and/or modified by the extension, and com-
pare the monitored activity to the activity expected based on
the submitted declaration(s). If the service detects a conflict
or inconsistency between the monitored activity and the
expected (declared) activity, then the service may signal a
fault to one or more of the system administrator, the submitter
of the extension, or to a user of the extension. For example,
utilization of the extension may include sending one or more
requests to a user interface, such as an application program-
ming interface (API), and the service may deny such requests
when a conflict is detected between the monitored activity
and the expected (declared) activity.

In some embodiments, the service may determine a set of
service platform resources (e.g., data, executable code, APIs)
associated with a particular formal declaration, and may fur-
ther determine when the resources associated with different
declarations overlap or exhibit another indicator of possible
incompatibility. If the service detects that the functionality of

US 9,075,687 B1

5

an extension that is associated with an overlap of resources is
being accessed, then the service may require that the access
attempt is first validated by application of the associated
validation code modules. In some embodiments, such a vali-
dation process may be required at runtime (e.g., at the time of
the access attempt). For example, suppose the service detects
that extensions A and B utilize, modify and/or extend (col-
lectively, “extend”) an overlapping set of service platform
resources, based at least in part on their associated formal
declarations. The service may detect an access attempt, via
extension A or B, of the overlapping portion of the service
platform resources and in response require that the access
attempt be validated by the validation code associated with
extension A and/or B. In accordance with at least one embodi-
ment of the invention, the service platform may also provide
validation code modules associated with various service plat-
form resources, and manipulation audits (e.g., code overlap
checks and code validation) may be performed with respectto
the service platform.

Prior to installing and/or activating a service platform
extension, the service may require that the validation code
associated with the extension satistfy one or more validation
quality criteria. For example, the service may measure a code
coverage ratio (i.e., the proportion of code in the extension
that was executed during the execution of the validation
tests—if every line of code from the extension is touched
during execution of validation tests, code coverage would be
100%) with respect to the extended service platform
resource(s), and require that the code coverage ratio be
greater than a threshold value (e.g., 85%, 95%). The service
may measure the code coverage ratio of a set of validation
code modules at least in part by executing the validation code
in the set and observing the portions of the extension code
and/or the service platform resources that are accessed/uti-
lized by the validation code.

In addition to measuring code coverage by measuring
executable lines touched, the system may also measure the
ratio of extension defined resources touched during valida-
tion. For instance, if an extension was added to a business
system to calculate shipping costs for an order, the extension
might define a shipping method as a custom record and a table
of shipping rate by weight as an attribute of the record. If the
system determined that validation tests created the shipping
method record and wrote to and read from the rate table, then
the object would be considered “covered” by the tests. Note
that different thresholds may exist for objects as opposed to
code, in terms of what is considered adequate coverage. Fur-
ther, coverage could also be measured based on extension
declarations. For instance, if an extension declares ‘“Read
TaxableTotal field from Invoice”, then the declaration would
be considered “covered” if the validation tests read the value
of the TaxableTotal field from an invoice record. Thus, in
some cases, a coverage ratio with respect to service platform
resources may be determined relative to the set of service
platform resources, and this value used as part of a process to
determine if a proposed extension will be accepted.

In at least one embodiment, the validation code may be
used to ensure that different extensions do not cause problems
with the platform/system behavior when used together, i.e.,
that the proposed extensions are not incompatible. The vali-
dation code can be used to determine this because when an
extension is installed on top of other extensions, the valida-
tion code for the extension being added and for any other
potentially conflicting extensions in the system can be
executed. A potential conflict may be determined by exten-
sion declaration collisions between extensions, where valida-
tion failures indicate that the behavior of one or more exten-

20

35

40

45

6

sions was interrupted or broken. In one embodiment,
validation code may take the form of executable code that
calls APIs to interact with the system and verify behavior. In
a business application, an example might be: “Execute an
invoice with an item for $5.00 with a 1% sales tax. Verify tax
is $0.05.”

FIG. 1 depicts aspects of an example computing environ-
ment 100 in which an embodiment of the invention may be
implemented. As shown, a variety of clients 102 incorporat-
ing and/or incorporated into a variety of computing devices
may communicate with a distributed computing service 104
through one or more networks 106. For example, a client may
incorporate and/or be incorporated into a client application
(e.g., software) implemented at least in part by one or more of
the computing devices. Examples of suitable computing
devices include personal computers, server computers 108,
desktop computers 110, laptop computers 112, notebook
computers, personal digital assistants (PDAs) 114, smart
phones 116, cell phones, and consumer electronic devices
incorporating one or more computing device components
such as one or more processors, central processing units
(CPU), or controllers. Examples of suitable networks 106
include networks utilizing wired and wireless communica-
tion technologies and networks operating in accordance with
any suitable networking and/or communication protocol
(e.g., the Internet).

The distributed computing service 104 may include mul-
tiple processing tiers including a user interface tier 120, an
application tier 122, and a data storage tier 124. The user
interface tier 120 may maintain multiple user interfaces 121,
including graphical user interfaces and/or web-based inter-
faces. The user interfaces may include a default user interface
for the service, as well as one or more user interfaces extended
by one or more tenants of the service (e.g., via access to one
or more APIs). The default user interface may include com-
ponents enabling tenants to provide service platform exten-
sions and otherwise administer their participation in the func-
tions and capabilities provided by the service. Tenants may be
distinguished from otherusers in this way, and/or tenants may
be responsible for costs incurred due to utilization of the
distributed computing service by tenant customers (e.g., users
of the service as extended by the tenant). Each tier may be
implemented with a set of computers and/or computer com-
ponents including computer servers and processors, and may
perform various functions, methods, processes, or operations
as determined by the execution of a software application or
set of instructions. The data storage tier 124 may include one
or more production data stores 125 and one or more testing,
validation and/or backup data stores 125. Data stores may be
implemented with any suitable data storage technology
including structured query language (SQL) based relational
database management systems (RDBMS).

In accordance with at least one embodiment of the inven-
tion, distributed computing service 104 may be multi-tenant,
and one or more tenants may be able to propose extensions to
the services and functions performed by service 104. How-
ever, as noted the ability for tenants to extend a common
service platform may result in inter-tenant extension incom-
patibilities if the proposed extensions are not effectively man-
aged. To address this potential problem, the distributed com-
puting service 104 may further include an extension manager
component 130 configured to provide management functions
and compatibility resolution capabilities for proposed service
platform extensions. In one embodiment, tenants may inter-
act with the extension manager 130 through one or more of
the user interfaces 121. An example extension manager 130 in
accordance with at least one embodiment of the invention is

US 9,075,687 B1

7

described in more detail herein, with reference to FIG. 4.
However, before providing such details, further information
is provided with respect to distributed computing services and
service platform extensions in accordance with at least one
embodiment of the invention.

As noted, service platform 104 may be operated by an
entity in order to provide multiple tenants with a set of busi-
ness related applications and functionality. These applica-
tions and functionality may include ones that a business uses
to manage various aspects of its operations. For example, the
applications and functionality may include providing web-
based access to business information systems, thereby allow-
ing a user with a browser and an Internet or intranet connec-
tion to view, enter, or modify certain types of business
information.

Such business information systems may include an Enter-
prise Resource Planning (ERP) system that integrates the
capabilities of several historically separate business comput-
ing systems into a common system, with the intention of
streamlining business processes and increasing efficiencies
on a business-wide level. By way of example, the capabilities
or modules of an ERP system may include: accounting, order
processing, time and billing, inventory management,
employee management/payroll, and employee calendaring
and collaboration, as well as reporting and analysis capabili-
ties relating to these functions. Another business information
system that may be provided as part of a service platform is an
integrated Customer Relationship Management (CRM) sys-
tem, which is designed to assist in obtaining a better under-
standing of customers, enhance service to existing customers,
and assist in acquiring new, profitable customers. By way of
example, the capabilities or modules of a CRM system may
include: sales force automation (SFA), marketing automa-
tion, contact list management, call center support, and web-
based customer support, as well as reporting and analysis
capabilities relating to these functions. With differing levels
of overlap with ERP/CRM initiatives and with each other,
efforts have also been directed toward development of
increasingly integrated partner and vendor management sys-
tems, web store/eCommerce systems, product lifecycle man-
agement (PLM) systems, and supply chain management
(SCM) systems.

Both functional advantages and strategic advantages may
be gained through the use of an integrated business system
comprising ERP, CRM, and other business capabilities, as for
example where the integrated business system is integrated
with a merchant’s eCommerce platform and/or “web store.”
For example, a customer searching for a particular product
can be directed to a merchant’s website and presented with a
wide array of product and/or services from the comfort of
their home computer, or even from their mobile phone. When
a customer initiates an online sales transaction via a browser-
based interface, the integrated business system can, not only
process the order, update accounts receivable, inventory data-
bases, and other ERP-based systems, but can also automati-
cally update strategic customer information databases, and
other CRM-based systems. These modules and other appli-
cations and functionalities may advantageously be integrated
and executed by a single code base accessing one or more
integrated databases as necessary, forming an integrated busi-
ness management platform.

However, each merchant is unique in terms of their com-
mercial offerings, desired customer demographics, and mar-
keting techniques, but also in terms of their internal business
organization and philosophies. Therefore, a robust integrated
business services platform preferably offers not only a rich set
of features, but also is capable of being customizable for each

10

15

20

25

30

35

40

45

50

55

60

65

8

business’ needs. Thus, it is desirable to provide users of such
a system with the ability to develop custom software appli-
cations and features that leverage the advantages of the func-
tionality of an integrated business platform in the manner
most desired by a particular user.

FIG. 2 depicts aspects of an example of a distributed com-
puting service architecture 200 in accordance with at least
one embodiment of the invention. The example architecture
includes a user interface layer or tier 202 having one or more
user interfaces 203. Examples of such user interfaces include
graphical user interfaces and application programming inter-
faces (APIs). Each user interface may include one or more
interface elements 204. For example, users may interact with
interface elements in order to access functionality and/or data
provided by application and/or data storage layers of the
example architecture. Examples of graphical user interface
elements include buttons, menus, checkboxes, drop-down
lists, scrollbars, sliders, spinners, text boxes, icons, labels,
progress bars, status bars, toolbars, windows, hyperlinks and
dialog boxes. Application programming interfaces may be
local or remote, and may include interface elements such as
parameterized procedure calls, programmatic objects and
messaging protocols. In one embodiment, proposed service
platform extensions may extend the user interface layer by
adding a new user interface, removing or replacing an exist-
ing user interface, and/or extending an existing user interface.
An existing user interface may be extended by adding new
interface elements, replacing interface elements, and/or alter-
ing/extending user interface elements (such as by altering the
previous functionality, display, or purpose of such elements).

The application layer 210 may include one or more appli-
cation modules 211, each having one or more sub-modules
212. The application modules and/or sub-modules may
include any suitable computer-executable code or set of
instructions (e.g., as would be executed by a suitably pro-
grammed processor or CPU), such as computer-executable
code corresponding to a programming language. For
example, programming language source code may be com-
piled into computer-executable code. Alternatively, or in
addition, the programming language may be an interpreted
programming language such as a scripting language. Each
application server (element 123 of FIG. 1) may include each
application module. Alternatively, different application serv-
ers may include different sets of application modules. Such
sets may be disjoint or overlapping. In one embodiment,
proposed service platform extensions may extend the appli-
cation layer by adding new application modules, removing or
replacing existing application modules, and/or extending the
functionality of existing application modules. An existing
application module may be extended by adding new sub-
modules, removing or replacing existing sub-modules and/or
altering/extending the functionality of existing sub-modules.

The data storage layer 220 may include one or more data
objects 222 each having one or more data object components
221, such as attributes and/or behaviors. For example, the
data objects may correspond to tables of a relational database,
and the data object components may correspond to columns
or fields of such tables. Alternatively, or in addition, the data
objects may correspond to data records having fields and
associated services. Alternatively, or in addition, the data
objects may correspond to persistent instances of program-
matic data objects, such as structures and classes. Each data
store in the data storage layer may include each data object.
Alternatively, different data stores may include different sets
of data objects. Such sets may be disjoint or overlapping. In
one embodiment, proposed service platform extensions may
extend the data storage layer by adding new data objects,

US 9,075,687 B1

9

removing or replacing existing data objects, and/or extending
existing data objects. Existing data objects may be extended
by adding new data object components, removing or replac-
ing existing data object components, and/or altering/extend-
ing existing data object components.

Note that the example computing environment depicted in
FIG. 1 is not intended to be a limiting example. Alternatively,
or in addition, computing environments in accordance with at
least one embodiment of the invention may include any suit-
able system that permits installation of a module that modifies
default behavior (e.g., an extension). Examples of suitable
systems include modifiable hardware systems, computing
systems incorporating firmware or re-configurable proces-
sors, and stand-alone or local-only software systems or appli-
cations. Although further examples below may reference the
example computing environment depicted in FIG. 1, it will be
apparent to one of skill in the art that the examples may be
adapted for alternate computing devices, systems, and envi-
ronments.

The distributed computing service 104 of FIG. 1 may
require that tenants provide proposed extensions in an exten-
sion package having a specified format and/or a specified set
of associated data. FIG. 3 depicts aspects of an example
extension package 300 in accordance with at least one
embodiment of the invention. The example extension pack-
age includes extension code 302, associated formal declara-
tions 303 with respect to service platform resources that are
utilized by the extension code (“declarations™), and associ-
ated validation code 304 that can verify that the extension
code has intended results when executed. The extension code
may include extensions for any suitable portion of the distrib-
uted computing system including extensions for the user
interface layer, the application layer, and/or the data storage
layer.

The declarations 303 may specify the service platform
resources utilized by the extension code at any suitable level
of granularity. For example, declarations 310 with respect to
user interface extensions 311 may specify one or more sets of
user interfaces and/or one or more sets of interface elements
that are utilized by the user interface layer extensions. Dec-
larations 312 with respect to application layer extensions 313
may specify one or more sets of application modules and/or
sub-modules that are utilized by the application layer exten-
sions. Declarations 314 with respect to data storage layer
extensions 315 may specify one or more sets of data objects
and/or data object components that are utilized by the data
storage layer extensions. Alternatively, or in addition, decla-
rations may be made with respect to extension code and
without reference to a particular layer or tier of the distributed
computing system. Declarations may reference any suitable
combination of user interfaces, user interface elements, appli-
cation modules, application sub-modules, data objects, and/
or data object components that are utilized by the extension
code.

The validation code 304 may include one or more valida-
tion code modules 305. For example, each validation code
module 305 may correspond to one or more portions of exten-
sion code 302. The correspondence between validation code
and extension code may occur at any suitable level of granu-
larity. For example, a validation code module may correspond
to one or more user interfaces, user interface elements, appli-
cation modules, application sub-modules, data objects, and/
or data object components. In one embodiment, the declara-
tions may specify a mapping between validation code and
extension code modules, sub-modules, etc.

In accordance with at least one embodiment of the inven-
tion, the layers, interfaces, modules, objects, elements, sub-

10

15

20

25

30

35

40

45

50

55

60

65

10

modules and/or components (collectively, “code™) depicted
in FIG. 3 may be associated with extension groups or envi-
ronments. For example, extension groups may include a base
group, a mutable group, and a tenant-controlled group. The
base code group may correspond to a stable base or core
platform that is not able to be altered by extensions. The
mutable code group may correspond to platform code that
may be changed by extensions. The tenant-controlled group
may correspond to code that may not be affected by exten-
sions without explicit authorization by the affected tenants.
For example, the user interface layer may include one or more
user interfaces configured and/or customized for each tenant
that are unaffected by extensions unless the affected tenant
explicitly incorporates extended code into their user inter-
face(s).

FIG. 4 depicts aspects of an example extension manager
400 in accordance with at least one embodiment of the inven-
tion (such as represented by element 130 in FIG. 1). The
extension manager 400 may receive and parse proposed
extension packages. Declarations and/or corresponding data
structures may be stored in a declaration database 402. Vali-
dation code and/or validation code-extension code associa-
tions may be stored in a validation code database 404. The
extension manager 400 may validate and install extension
code. An install validation component 406 of the extension
manager 400 may determine whether received extension code
satisfies one or more validation quality criteria prior to instal-
lation.

A declaration enforcement component 408 of the exten-
sion manager 400 may monitor service platform resources
that are utilized and/or modified by installed extension code
and may compare the monitored activity to the activity that is
expected based on a set of associated declarations. Upon
detection of a fault or conflict, the declaration enforcement
component 408 may deny an associated request. Where
monitored activity involves activity or transactions affecting
data in a live or production data store, such activity or trans-
actions may be rolled back. Alternatively, or in addition,
monitored activity may occur in a virtual data space and
committed to the live or production data store when the dec-
laration enforcement component 408 determines that the
monitored activity has completed without a fault or conflict
being detected.

A runtime validation component 410 of the extension man-
ager 400 may determine declarations that are associated with
an overlap between their respective service platform
resources (i.e., declarations that reference the same resource
or set of resources) and, when the corresponding extension
code is accessed by distributed computing system users, may
require that the access call or request be validated by the
associated validation code before being allowed. Alterna-
tively, or in addition, an overlap may be determined based at
least in part on the observed service platform resource access
that occurs during validation code execution as part of the
extension code installation process, for example, based at
least in part on code coverage data collected by the install
validation component 406.

The description now turns to procedures that may be per-
formed as part of the installation and use of an extension, in
accordance with at least one embodiment of the invention.
For example, the procedures may be performed by an imple-
mentation of the extension manager. FIG. 5 is a flow chart or
flow diagram illustrating the steps or stages of an exemplary
process 500 that may be performed as part of extension man-
agement, in accordance with at least one embodiment of the
invention. FIG. 5 describes a process whereby new extensions
are validated (using their own validation code) as they are

US 9,075,687 B1

11

added to the platform/system. This ensures that no incompat-
ibility exists between the proposed extension and other exten-
sions. The proposed extension can also be rated on how well
it was validated by measuring the proportion of extension
code that was executed during the validation (i.e. code cov-
erage). Code coverage minimums can be enforced on the
system to ensure uniformly robust extensions.

As shown in the figure, the process includes an extension
package being received (stage 502). For example, the exten-
sion manager may receive the extension package from an
authorized administrator for a tenant of the distributed com-
puting service. The extension package may be parsed, and
such parsing may include parsing of the declarations in the
extension package (stage 504). For example, the extension
manager may parse the extension package and store the dec-
larations or corresponding data structures in the declaration
database.

A level of code coverage of the validation code in the
received declaration package may then be determined (stage
506). For example, the install validation component of the
extension manager may execute the validation code (or cause
it to be executed), as suggested by stage 507, and may monitor
the service platform resources that are accessed as a result of
that execution. If the level of code coverage is not greater than
a code coverage threshold (as illustrated by the “No” branch
of decision process 508), then the provider of the extension
package may be notified of the shortcoming (stage 510), and
the extension manager may decline to install the extension
code. Otherwise (as illustrated by the “Yes” branch of deci-
sion process 508), the extension manager may install the
execution code into the production environment (or cause it to
be installed), as suggested by stage 512. For example, the
extension manager may cause the extension code to be
installed in (or on) a suitable live user interface, application,
and/or data store server. The declaration enforcement com-
ponent may then ensure that calls and/or requests accessing
the installed extensions conform to the provided declarations
(stage 514), as will be described in greater detail with refer-
ence to FIG. 6 and FIG. 7.

FIG. 6 is a flow chart or flow diagram illustrating the steps
or stages of an exemplary process 600 that may be performed
as part of extension-related request handling, in accordance
with at least one embodiment of the invention. FIG. 6
describes how overlapping extension declarations may be
used to determine whether or not to execute validation code
on other extensions as new extensions are added to the sys-
tem.

When a new set of extension declarations is received (stage
602), for example as part of a declaration package, one or
more overlaps with respect to existing declarations may be
determined (stage 604). For example, the runtime validation
component of the extension manager may determine the over-
lap(s) at the time the declarations are received and update an
overlap map maintained in the declaration database (stage
606). Upon receiving an extension-related request (stage
608), such overlap maps may be utilized (for example, by the
runtime validation component), to determine whether a par-
ticular request will access service platform resources that are
associated with an overlap (stage 610). If not (as illustrated by
the “No” branch of decision process 610), then the request
may be processed as normal (stage 620). If so (as illustrated
by the “Yes” branch of decision process 610), then validation
code associated with the request may be determined, for
example, based at least in part on extension code-validation
code associations specified by the declarations (stage 612).

The runtime validation component of the extension man-
ager may then execute the validation code associated with the

20

25

35

40

45

50

12

request (stage 614), and if the request is validated by the
validation code (as illustrated by the “Yes” branch of decision
process 616), then the request may be processed as normal
(stage 620). Otherwise (as illustrated by the “No” branch of
decision process 616), the request may be denied as non-
validating (stage 618). For example, the runtime validation
component may respond to the initiator of the request with an
indication that the validation process failed. In accordance
with at least one embodiment of the invention, the runtime
validation component has at least one mode of operation in
which the validation code associated with the request is
executed regardless of whether an overlap is detected.

FIG. 7 is a flow chart or flow diagram illustrating further
example steps for extension-related request handling, in
accordance with at least one embodiment of the invention.
FIG. 7 describes a way that declarations may be restricted to
using only the parts of the system that have been declared. For
instance, a declaration could reference a business object and
a permission to perform an action on the object: “Modify
TaxTotal field on invoice” or “Read customer address from
sales order.” During execution of extension code, if the sys-
tem detects an action that has not been declared, execution
may be halted, or otherwise limited or constrained.

Upon receiving an extension-related request (stage 702), a
corresponding extension declaration may be determined
(stage 704). For example, particular declarations may specify
one or more portions of the extension code with which they
are associated, and a reverse mapping from the extension
code to the declarations may be constructed and/or updated
when the declarations are received and parsed. The declara-
tion enforcement component may identify an incoming
request as being extension-related and utilize the reverse
mapping to determine one or more associated declarations.

The associated declaration(s) may reference a set of ser-
vice platform resources, of which the request is expected to
utilize at least a portion. [t may then be determined whether or
not the request conforms to the associated declarations
(stages 706 and 708). For example, it may be determined
whether or not, in performing the request, the extension uti-
lizes, or is predicted to utilize, service platform resources
outside of the set referenced by the associated declaration(s).
If so (as illustrated by the “No” branch of decision process
708), then the declaration enforcement component may reject
the request as failing to conform to the declaration(s) (stage
712). Otherwise (as illustrated by the “Yes” branch of deci-
sion process 708), the request may be processed as normal
(stage 710).

With regards to FIGS. 5, 6, and 7, note that each figure
describes a method of ensuring proper functioning of mul-
tiple extensions within a single extensible system. In doing
this, each illustrated method addresses the potential
problem(s) that may arise from incompatible extensions at a
different stage in the extension cycle; when an extension is
added to the system (the method described with reference to
FIGS. 5 and 6), and when an extension is executed (the
method described with reference to FIG. 7).

With regards to how potential conflicts between extensions
or other forms of incompatibilities are determined by refer-
ence to declarations, note that declarations inform the plat-
form/system as to which types of standard behavior or func-
tionality the extension proposes to modify. As examples, such
standard behaviors or functionality may include: (1) reading
and writing of standard records and fields, (2) reading and
writing of records and fields from other extensions, or (3)
execution of processes (e.g. tax pipeline, lead routing, PO
approval routing, etc.). Declarations may include information
relevant to virtually any process or data that is part of the

US 9,075,687 B1

13

platform/system and that is accessible via a Ul or a program-
matic API (e.g., including processes such as login, caching,
external system communication, payment processing, etc.).
Declarations may also be thought of as access requests. If an
extension desires access to specific data or a process, it must
be requested declaratively (e.g. “Modify TaxTotal field on
Invoice™). In order to make modifications to data or processes,
the intent to do so must be declared or the extension will fail
when it tries to read or modify the data or process.

Dependencies between extensions may be determined by
looking at whether there are dependencies between the dec-
larations. For instance, if one extension reads a particular field
and another extension writes to the same field, then the read-
ing extension has a dependency on the writing extension. Two
extensions that write to the same field have a dependency on
each other. Two extensions that use the same process have a
dependency on each other. Validation tests can be executed
whenever there is a dependency to determine if there is a
conflict between one or more extensions.

Note that although the previous description of one or more
embodiments of the invention has been directed to implemen-
tation of the invention within a multi-tenant distributed com-
puting platform or service that provides one or more of ERP,
CRM, or eCommerce functions, embodiments of the inven-
tion may also be utilized with other types of customizable
systems. Typically, platforms that are customizable will
include the following components: (1) standard records and
behavior, (2) custom attributes on standard records, (3) cus-
tom records, and (4) some degree of customizable behavior
via a programming language with access to some or all sys-
tem records and processes. Given one or more of those com-
ponents, the invention describes ways of using the compo-
nents to determine whether a proposed extension will
function properly and to identify possible incompatibilities
between a proposed extension and existing platform func-
tionality. For example, in one platform the standard records
may be business objects (e.g. Invoice, Vendor, Item, etc.). In
another platform, the standard records may be CRM records
(e.g. Customer or Opportunity). In yet another platform (such
as an email platform), the standard records may be emails,
contacts, or calendar events.

In accordance with at least one embodiment of the inven-
tion, the system, apparatus, methods, processes and/or opera-
tions for extension management may be wholly or partially
implemented in the form of a set of instructions executed by
one or more programmed computer processors, such as a
central processing unit (CPU) or microprocessor. Such pro-
cessors may be incorporated in an apparatus, server, client or
other computing device operated by, or in communication
with, other components of the system.

Asan example, F1G. 8 depicts aspects of elements that may
be present in a computer device and/or system 800 configured
to implement a method and/or process in accordance with
some embodiments of the present invention. The subsystems
shown in FIG. 8 are interconnected via a system bus 802.
Additional subsystems include a printer 804, a keyboard 806,
a fixed disk 808, and a monitor 810, which is coupled to a
display adapter 812. Peripherals and input/output (1/O)
devices, which couple to an 1/O controller 814, can be con-
nected to the computer system by any number of means
known in the art, such as a serial port 816. For example, the
serial port 816 or an external interface 818 can be utilized to
connect the computer device 800 to further devices and/or
systems not shown in FIG. 8 including a wide area network
such as the Internet, a mouse input device, and/or a scanner.
The interconnection via the system bus 802 allows one or
more processors 820 to communicate with each subsystem

10

15

20

25

30

35

40

45

50

55

60

65

14

and to control the execution of instructions that may be stored
in a system memory 822 and/or the fixed disk 808, as well as
the exchange of information between subsystems. The sys-
tem memory 822 and/or the fixed disk 808 may embody a
tangible computer-readable medium.

It should be understood that the present invention as
described above can be implemented in the form of control
logic using computer software in a modular or integrated
manner. Based on the disclosure and teachings provided
herein, a person of ordinary skill in the art will know and
appreciate other ways and/or methods to implement the
present invention using hardware and a combination of hard-
ware and software.

Any of the software components, processes or functions
described in this application may be implemented as software
code to be executed by a processor using any suitable com-
puter language such as, for example, JAVA™, C++ or Perl
using, for example, conventional or object-oriented tech-
niques. The software code may be stored as a series of instruc-
tions, or commands on a computer readable medium, such as
a random access memory (RAM), a read only memory
(ROM), a magnetic medium such as a hard-drive or a floppy
disk, or an optical medium such as a CD-ROM. Any such
computer readable medium may reside on or within a single
computational apparatus, and may be present on or within
different computational apparatuses within a system or net-
work.

All references, including publications, patent applications,
and patents, cited herein are hereby incorporated by reference
to the same extent as if each reference were individually and
specifically indicated to be incorporated by reference and/or
were set forth in its entirety herein.

The use of the terms “a” and “an” and “the” and similar
referents in the specification and in the following claims are to
be construed to cover both the singular and the plural, unless
otherwise indicated herein or clearly contradicted by context.
The terms “having,” “including,” “containing” and similar
referents in the specification and in the following claims are to
be construed as open-ended terms (e.g., meaning “including,
but not limited to,”) unless otherwise noted. Recitation of
ranges of values herein are merely indented to serve as a
shorthand method of referring individually to each separate
value inclusively falling within the range, unless otherwise
indicated herein, and each separate value is incorporated into
the specification as if it were individually recited herein. All
methods described herein can be performed in any suitable
order unless otherwise indicated herein or clearly contra-
dicted by context. The use of any and all examples, or exem-
plary language (e.g., “such as”) provided herein, is intended
merely to better illuminate embodiments of the invention and
does not pose a limitation to the scope of the invention unless
otherwise claimed. No language in the specification should be
construed as indicating any non-claimed element as essential
to each embodiment of the present invention.

Different arrangements of the components depicted in the
drawings or described above, as well as components and steps
not shown or described are possible. Similarly, some features
and subcombinations are useful and may be employed with-
out reference to other features and subcombinations.
Embodiments of the invention have been described for illus-
trative and not restrictive purposes, and alternative embodi-
ments will become apparent to readers of this patent. Accord-
ingly, the present invention is not limited to the embodiments
described above or depicted in the drawings, and various
embodiments and modifications can be made without depart-
ing from the scope of the claims below.

US 9,075,687 B1

15

What is claimed is:

1. A method of permitting users of a multi-tenant comput-
ing service platform to introduce an extension to one or more
of the functions of the platform, comprising:

receiving a first extension package from a first user of the

multi-tenant computing service platform, the first exten-
sion package defining a first extension and including a
declaration that identifies one or more resources of the
platform utilized by the first extension and a set of
instructions executable by an electronic processor to
validate operation of the first extension;

parsing the first extension package to identify the included

declaration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-
istic of the first extension; and

installing the first extension if execution of the set of

instructions satisfies the threshold value; and
receiving a second extension package from a second user
of the multi-tenant computing service platform, the sec-
ond extension package defining a second extension and
including a declaration that identifies one or more
resources of the platform utilized by the second exten-
sion and a set of instructions executable by an electronic
processor to validate operation of the second extension;

parsing the second extension package to identify the
included declaration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-
istic of the second extension; and

installing the second extension if execution of the set of

instructions satisfies the threshold value.

2. The method of claim 1, wherein determining if execution
of'the set of instructions results in satisfying a threshold value
with respect to a characteristic of the first extension further
comprises determining if execution of the set of instructions
results in satisfying a threshold value with respect to coverage
of the code that would be executed by a use of the first
extension.

3. The method of claim 1, wherein determining if execution
of'the set of instructions results in satisfying a threshold value
with respect to a characteristic of the first extension further
comprises determining if execution of the set of instructions
results in satisfying a threshold value with respect to coverage
of the resources defined by the first extension.

4. The method of claim 1, further comprising:

receiving a request to access the first extension;

determining if the request conforms to the terms of the first

extension; and

processing the request if the request conforms to the terms

of the first extension.

5. The method of claim 1, wherein the first extension pro-
vides an extension to the functionality of one or more ofa user
interface layer, an application layer, or a data storage layer of
the multi-tenant computing service platform.

6. The method of claim 5, wherein the extension to the
functionality includes one or more of an extension to a login
process, a caching process, an external system communica-
tion process, or a payment processing process.

15

20

25

30

35

40

45

50

55

16

7. A method of permitting a user of a multi-tenant comput-
ing service platform to introduce an extension to one or more
of the functions of the platform, comprising:

receiving an extension package from the user of the multi-

tenant computing service platform, the extension pack-
age including a declaration that identifies one or more
resources of the platform utilized by the extension and a
set of instructions executable by an electronic processor
to validate operation of the extension;

parsing the extension package to identify the included dec-

laration;

determining the one or more resources identified in the

declaration;

operating the electronic processor to execute the set of

instructions;

determining if execution of the set of instructions results in

satisfying a threshold value with respect to a character-
istic of the extension;

installing the extension if execution of the set of instruc-

tions satisfies the threshold value;

receiving a request to access the extension;

determining if the request conforms to the terms of the

extension; and

processing the request if the request conforms to the terms

of the extension.

8. The method of claim 7, further comprising:

prior to installing the extension, determining if an overlap

exists between the one or more resources identified in
the declaration and a set of resources identified in dec-
larations associated with previously installed exten-
sions; and

if an overlap exists, then updating a record containing data

related to overlaps between the set of resources identi-
fied in declarations associated with previously installed
extensions.

9. The method of claim 8, wherein if an overlap exists
between the one or more resources identified in the declara-
tion and a set of resources identified in declarations associ-
ated with previously installed extensions, then the method
further comprises:

receiving a request to access the extension;

accessing the record containing data related to overlaps;

determining from the record a set of validation code asso-

ciated with the request;

executing the set of validation code associated with the

request; and

determining if execution of the set of validation code

results in satisfying a threshold value with respect to a
characteristic of the extension.

10. The method of claim 7, further comprising:

monitoring the resources of the platform accessed when

processing the request;

determining if the resources accessed when processing the

request conform to those identified in the declaration;
and

suspending processing of the request if the resources

accessed when processing the request do not conform to
those identified in the declaration.

11. The method of claim 7, wherein determining if execu-
tion of the set of instructions results in satisfying a threshold
value with respect to a characteristic of the extension further
comprises determining if execution of the set of instructions
results in satisfying a threshold value with respect to coverage
of the code that would be executed by a use of the extension.

12. The method of claim 7, wherein determining if execu-
tion of the set of instructions results in satisfying a threshold
value with respect to a characteristic of the extension further

US 9,075,687 B1

17

comprises determining if execution of the set of instructions
results in satisfying a threshold value with respect to coverage
of the resources defined by the extension.

13. The method of claim 7, wherein the extension provides
an extension to the functionality of one or more of a user
interface layer, an application layer, or a data storage layer of
the multi-tenant computing service platform.

14. The method of claim 13, wherein the extension to the
functionality includes one or more of an extension to a login
process, a caching process, an external system communica-
tion process, or a payment processing process.

15. A computer system having at least one processor con-
figured to execute instructions from a memory for permitting
users of a multi-tenant computing service platform to intro-
duce an extension to one or more of the functions of the
platform, comprising:

a user interface layer;

an application layer;

a data storage layer; and

an extension manager, the extension manager further com-

prising:

an install validation component configured to deter-
mine, at least in part, whether code associated with a
proposed extension satisfies a validation criterion
prior to installation of the code;

a runtime validation component configured to deter-
mine, at least in part, whether execution of the code
associated with the proposed extension would result
in access of resources associated with one or more
other previously installed extensions;

10

15

20

18

a declaration enforcement component configured to
determine, at least in part, whether execution of the
code associated with the proposed extension results in
access of the resource or resources identified in a
declaration associated with the proposed extension;

a declaration database containing data related to decla-
rations associated with one or more previously
installed extensions; and

a validation code database containing validation code
associated with one or more previously installed
extensions.

16. The system of claim 15, wherein the install validation
component is configured to determine if execution of valida-
tion code associated with the proposed extension results in
satisfying a threshold value with respect to coverage of the
code that would be executed by a use of the extension.

17. The system of claim 15, wherein the install validation
component is configured to determine if execution of valida-
tion code associated with the proposed extension results in
satisfying a threshold value with respect to coverage of the
resources defined by the extension.

18. The system of claim 15, wherein the declaration
enforcement component is configured to halt or otherwise
constrain execution of the code associated with the proposed
extension if execution of the code results in accessing a
resource not in the declaration associated with the proposed
extension.

